Spectral projected gradient and variable metric methods for optimization with linear inequalities
نویسندگان
چکیده
A family of variable metric methods for convex constrained optimization was introduced recently by Birgin, Mart́ınez and Raydan. One of the members of this family is the Inexact Spectral Projected Gradient (ISPG) method for minimization with convex constraints. At each iteration of these methods a strictly convex quadratic function with convex constraints must be (inexactly) minimized. In the case of the ISPG method it was shown that, in some important applications, iterative projection methods can be used for this minimization. In this paper the particular case in which the convex domain is a polytope described by a finite set of linear inequalities is considered. For solving the linearly constrained convex quadratic subproblem a dual approach is adopted, by means of which subproblems become (not necessarily strictly) convex quadratic minimization problems with box constraints. These subproblems are solved by means of an active-set box-constraint quadratic optimizer with a proximal-point type unconstrained algorithm for minimization within the current faces. Convergence results and numerical experiments are presented.
منابع مشابه
Linear convergence analysis of the use of gradient projection methods on total variation problems
Optimization problems using total variation frequently appear in image analysis models, in which the sharp edges of images are preserved. Direct gradient descent methods usually yield very slow convergence when used for such optimization problems. Recently, many duality-based gradient projection methods have been proposed to accelerate the speed of convergence. In this dual formulation, the cos...
متن کاملProjected Reflected Gradient Methods for Monotone Variational Inequalities
This paper is concerned with some new projection methods for solving variational inequality problems with monotone and Lipschitz-continuous mapping in Hilbert space. First, we propose the projected reflected gradient algorithm with a constant stepsize. It is similar to the projected gradient method, namely, the method requires only one projection onto the feasible set and only one value of the ...
متن کاملPROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS
We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...
متن کاملEnhancing Sparsity by Constraining Strategies: Constrained SIRT versus Spectral Projected Gradient Methods
We investigate a constrained version of simultaneous iterative reconstruction techniques (SIRT) from the general viewpoint of projected gradient methods. This connection enable us to assess the computational merit of this algorithm class. We borrow a leaf from numerical optimization to cope with the slow convergence of projected gradient methods and propose an acceleration procedure based on th...
متن کاملNonmonotone Spectral Projected Gradient Methods on Convex Sets
Nonmonotone projected gradient techniques are considered for the minimization of differentiable functions on closed convex sets. The classical projected gradient schemes are extended to include a nonmonotone steplength strategy that is based on the Grippo-Lampariello-Lucidi nonmonotone line search. In particular, the nonmonotone strategy is combined with the spectral gradient choice of stepleng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001